Large Margin Boltzmann Machines
نویسندگان
چکیده
Boltzmann Machines are a powerful class of undirected graphical models. Originally proposed as artificial neural networks, they can be regarded as a type of Markov Random Field in which the connection weights between nodes are symmetric and learned from data. They are also closely related to recent models such as Markov logic networks and Conditional RandomFields. Amajor challenge for Boltzmann machines (as well as other graphical models) is speeding up learning for large-scale problems. The heart of the problem lies in efficiently and effectively approximating the partition function. In this paper, we propose a new efficient learning algorithm for Boltzmann machines that allows them to be applied to problems with large numbers of random variables. We introduce a new large-margin variational approximation to the partition function that allows Boltzmann machines to be trained using a support vector machine (SVM) style learning algorithm. For discriminative learning tasks, these large margin Boltzmann machines provide an alternative approach to structural SVMs. We show that these machines have low sample complexity and derive a generalization bound. Our results demonstrate that on multilabel classification problems, large margin Boltzmann machines achieve orders of magnitude faster performance than structural SVMs and also outperform structural SVMs on problems with large numbers of labels.
منابع مشابه
Large Margin Boltzmann Machines and Large Margin Sigmoid Belief Networks
Current statistical models for structured prediction make simplifying assumptions about the underlying output graph structure, such as assuming a low-order Markov chain, because exact inference becomes intractable as the tree-width of the underlying graph increases. Approximate inference algorithms, on the other hand, force one to trade off representational power with computational efficiency. ...
متن کاملLarge-Margin kNN Classification Using a Deep Encoder Network
KNN is one of the most popular classification methods, but it often fails to work well with inappropriate choice of distance metric or due to the presence of numerous class-irrelevant features. Linear feature transformation methods have been widely applied to extract class-relevant information to improve kNN classification, which is very limited in many applications. Kernels have been used to l...
متن کاملLiquid-liquid equilibrium data prediction using large margin nearest neighbor
Guanidine hydrochloride has been widely used in the initial recovery steps of active protein from the inclusion bodies in aqueous two-phase system (ATPS). The knowledge of the guanidine hydrochloride effects on the liquid-liquid equilibrium (LLE) phase diagram behavior is still inadequate and no comprehensive theory exists for the prediction of the experimental trends. Therefore the effect the ...
متن کاملDeep Transductive Semi-supervised Maximum Margin Clustering
Semi-supervised clustering is an very important topic in machine learning and computer vision. The key challenge of this problem is how to learn a metric, such that the instances sharing the same label are more likely close to each other on the embedded space. However, little attention has been paid to learn better representations when the data lie on non-linear manifold. Fortunately, deep lear...
متن کاملInfinite SVM: a Dirichlet Process Mixture of Large-margin Kernel Machines
We present Infinite SVM (iSVM), a Dirichlet process mixture of large-margin kernel machines for multi-way classification. An iSVM enjoys the advantages of both Bayesian nonparametrics in handling the unknown number of mixing components, and large-margin kernel machines in robustly capturing local nonlinearity of complex data. We develop an efficient variational learning algorithm for posterior ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009